What Is Floppy Disk Drive (FDD)?

TechDogs Avatar

You can relive all of your favorite floppy disk moments for the first time! It will bring back some old memories and evoke some laughter. Remember when you had to spend hours formatting floppy disks or trying to fit those old physical size disks into your new laptop? The Floppy Disk Drive (FDD) is a small piece of hardware used between 1982 and 2003. The FDD was invented in 1967 by the IBM Corporation and was one of the first types of hardware storage that could read and write to a portable device. The floppy disk drive, or FDD, was used for reading and writing data onto "floppy disks," more commonly known as them. These floppy disks were also known as floppy disks because they were flexible like an actual disk (as opposed to today's rigid CDs and DVDs). Although floppy disks are outdated today and have been replaced by USB flash drives and cloud storage, their unique "Floppy Disk Controller" remains in use today in the early days of computing, used a floppy disk to store vast amounts of data. Developed by IBM and then manufactured by other companies in the 1970s and 1980s, used floppy disks to load hardware-level instructions and data structures called microcode into the mainframe. The most popular floppy disk sizes were 3.5 inches, 5.25 inches and 8 inches – with capacity growing from 170 kilobytes in 1971 to 173 kilobytes in 1972, up to 1 megabyte in 1978. (An 8-inch disk could hold 80 kilobytes of data, the Floppy Disk Controller (FDD) was a part of many PC, notebook and laptop systems during the 1980s and 1990s. The floppy drive cable could house two drives. At the end of the thread, I drove the drive A in a computer system. When added another drive to the middle of the cable, it became drive B. Today, floppy drives are rarely used for personal computers and were eventually replaced by CDs (Compact Discs), USB (Universal Serial Bus) and ZIP drives. The FDD can read and write to floppy disks like IN THE GOOD OLD DAYS. Whether you want to read old technology or write new media, this device offers both uses in one package.

TechDogs Logo

Related Terms by Storage

Scanning Electron Microscope (SEM)

The scanning electron microscope combines two of the most valuable types of microscopes: They function in the same way as a standard microscope but are superior. Imagine you are looking at the very tip of your nose right now and attempting to see what's there. To get a close look at those minuscule hairs, you would need a powerful microscope, and if you squinted your eyes that intently at your face, you would probably have a headache. Imagine instead employing a scanning electron microscope, in which case the electrons would perform all the work for you. Since electrons make it possible for visual display results to have better integrity and resolution, objects can be seen more clearly and be used for cutting-edge research and engineering. You may not believe anything like this might be beneficial in regular life, but it absolutely is. We wouldn't be able to see how the tiny parts of bugs work together to form a whole, nor would we be able to see how much space there is between each atom in our bodies if we didn't have scanning electron microscopes. We would know nothing about our world if it weren't for the scanning electron microscopes that are currently in use. An electron beam is used to analyze whatever is being viewed in a scanning electron microscope, which is a type of microscope. It is also known as an SEM, and it is really interesting. The SEM traces the paths that electrons go through in an experiment. An electron gun is responsible for releasing electrons, which can be thought of as a light bulb that releases electrons rather than photons (light particles). Then, after passing through a few different components, such as scanning coils and a detector for backscattered electrons. You now possess some images obtained from the SEM! The backscattered electrons are transformed into signals and then delivered to a display screen. So as you're doing it, you're looking at photographs of your product on your computer or television screen - that's awesome!

...See More

Secure Hash Algorithm (SHA)

Secure Hash Algorithm is a set of algorithms developed by the National Institutes of Standards and Technology and other government and private parties. Cryptographic hashes (or checksums) have been used for electronic signatures and file integrity for decades. However, these functions have evolved to address some of the cybersecurity challenges of the 21st century. The NIST has developed a set of secure hashing algorithms that act as a global framework for encryption and data management systems. The initial instance of the Secure hash Algorithm (SHA) was in 1993. It was a 16-bit hashing algorithm and is known as SHA-0. The successor to SHA-0, SHA-1, was released in 1995 and featured 32-bit hashing. Eventually, the next version of SHA was developed in 2002, and it is known as SHA-2. SHA-2 differs from its predecessors because it can generate hashes of different sizes. The whole family of secure hash algorithms goes by the name SHA. SHA-3, or Keccak or KECCAK, is a family of cryptographic hash functions designed by Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. SHA-3 competition to develop a new secure hash algorithm was held by the United States National Security Agency (NSA) in 2007. To be a super safe and fast hashing algorithm, SHA3 was developed from this contest. The evolution of cybersecurity has led to the development of several "secure hash algorithms." Security is a crucial concern for businesses and individuals in today's digital world. As a result, many types of encryption have been developed to protect data in various scenarios. One of these is hash algorithms. All secure hash algorithms are part of new encryption standards to keep sensitive data safe and prevent different types of attacks. These algorithms use advanced mathematical formulas so that anyone who tries to decode them will get an error message that they aren't expected in regular operation.

...See More

Segregated Witness (SegWit)

It is time to get this party started! SegWit is an agreement implemented in the Bitcoin cyber currency community. It is also a soft fork in the Bitcoin chain and has been widely accepted by miners and users. So what does it all mean? In short, if you are running a node (a piece of software that helps keep the Bitcoin network stable), you need to upgrade your software by April 27th, or else your node will stop working. SegWit was activated as part of a hard fork on August 24th, 2017. The most important thing to note about SegWit is that it fixes transaction malleability, which has plagued miners and users for years. However, you do not need to worry if you do not want to upgrade your software. You will still be able to use Bitcoin just fine! It is confusing, but it is not that confusing. Segregated Witness (SegWit) is a proposal to improve Bitcoin implemented in August 2017. It allows for more transactions per block, which means lower fees and faster transactions.SegWit2x is a proposal that would include a hard fork months after the initial adoption of SegWit, creating two bitcoins. One of these versions would have SegWit, and one wouldn't, but both would be called "Bitcoin" and act as separate currencies. BIP 148 is another proposal that includes a user-activated hard fork and proposes implementing SegWit.SegWit is a soft fork, not a hard fork. SegWit is a technical improvement that allows more transactions to be processed simultaneously, making the network faster and more efficient. A hard fork is when developers propose changes to the protocol. If most users accept those changes, there will be two versions of that particular cryptocurrency, one for each side. The Bitcoin Cash (BCH) chain split from Bitcoin in August 2017 as an example of a crypto hard fork. Bitcoin Cash is the result of a hard fork.

...See More

Join Our Newsletter

Get weekly news, engaging articles, and career tips-all free!

By subscribing to our newsletter, you're cool with our terms and conditions and agree to our Privacy Policy.

  • Dark
  • Light